Abstract
We demonstrate the possiblity to cool nanoelectronic systems in nonequilibrium situations by increasing the temperature of the environment. Such cooling by heating is possible for a variety of experimental conditions where the relevant transport-induced excitation processes become quenched and deexcitation processes are enhanced upon an increase of temperature. The phenomenon turns out to be robust with respect to all relevant parameters. It is especially pronounced for higher bias voltages and weak to moderate coupling. Our findings have implications for open quantum systems in general, where electron transport is coupled to mechanical (phononic) or photonic degrees of freedom. In particular, molecular junctions with rigid tunneling pathways or quantum dot circuit QED systems meet the required conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.