Abstract
During the pellet cooling process, cooling air velocity is crucial for optimizing the cooling rate, evaluating the utilization rate of cooling heat energy, and improving pellet performance. As the simulated cooling air velocity increased, the gas temperature at the cooling endpoint decreased from 87 °C to 51 °C, and the solid temperature decreased from 149 °C to 103 °C. The total enthalpy of the recovered gas initially reduced and then increased while the heat recovery rate gradually increased. During the experiment, the inhomogeneity of pellet quality gradually increased with the rise in cooling air velocity. The effect of cooling air velocity on pellet properties is primarily reflected in the formation of cracks and low-melting liquid phases (FeO and fayalite). As the cooling air velocity increases, the softening onset temperature of the pellet decreases significantly. The melting zone decreases from 193 °C to 105 °C, and the permeability of the adhesive zone increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.