Abstract

A novel sample preparation method that combines the advantages of high surface area geometry and cold surface effect was proposed to achieve high sensitivity gas sampling. To accomplish this goal, a device that enables the membrane to be cooled down was developed for sampling, and a gas chromatograph–mass spectrometer was used for separation and quantification analysis. Method development included investigation of the effect of membrane temperature, membrane size, gas flow rate and humidity. Results showed that high sensitivity for equilibrium sampling, such as limonene sampling in the current study could be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity could be obtained by using thinner membranes with a larger surface and/or a higher sampling flow rate. In addition, humidity showed no significant influence on extraction efficiency, due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) was found, and the reproducibility of the developed cooled membrane gas sampling method was evaluated. Results showed that LODs with a membrane diameter of 19mm at room temperature sampling were 9.2ng/L, 0.12ng/L, 0.10ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility revealed RSD% lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooled membrane device could serve as an alternative powerful tool for future gas sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call