Abstract

The Kingscote Limestone is a thin, biofragmental ~41m thick Paleogene subtropical to cool-temperate carbonate interpreted to have accumulated in a seaway developed between a series of mid-shelf islands. It is a pivotal section that allows interpretation of a region in which there is little exposure of early Cenozoic shelf sediments. Sedimentation occurred on part of the shelf along the northern margin of an extensive Eocene embayment that evolved into a narrow Oligocene ocean following collapse of the Tasman Gateway. Eocene strata are subtropical echinoid-rich floatstones with conspicuous bryozoans, and mollusks, together with large and small benthic foraminifers. Numerous echinoid rudstone storm deposits punctuate the succession. Correlation with coeval Eocene strata across southern Australia supports a regional facies model wherein inner neritic biosiliceous spiculitic sediments passed outboard into calcareous facies. The silica was derived from land covered by a thriving subtropical forest and attendant deep weathering. Oligocene rocks are distinctively cooler cyclic cross-bedded bryozoan rudstones and floatstones with a similar benthic biota but dominated by bryozoans and containing no large benthic foraminifers. These deposits are interpreted as flood-dominated tidal subaqueous dunes that formed in a flood-tide dominated inter-island strait. Omission surfaces at the top of the Eocene and at the top of most Oligocene cycles are Fe-stained hardgrounds that underwent extensive multigeneration seafloor and meteoric diagenesis prior to deposition of the next cycle. Cycles in the Kingscote Limestone, although mostly m-scale and compositionally distinct are similar to those across the region and point to a recurring cycle motif controlled by icehouse eustasy and local paleogeography.11Formerly J. MacDonald, Queen's University.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call