Abstract
The traditional methods of forest classification, based on the interpretation of aerial photographs and processing of multi-spectral and/or hyper-spectral remote sensing data are limited in their ability to capture the structural complexity of the forests compared with analysis of airborne LiDAR (light detection and ranging) data. This is because of LiDAR's penetration of forest canopies such that detailed and three-dimensional forest structure descriptions can be derived. This study applied airborne LiDAR data for the classification of cool temperate rainforest and adjacent forests in the Strzelecki Ranges, Victoria, Australia. Using normalised LiDAR point data, the forest vertical structure was stratified into three layers. Variables characterising the height distribution and density of forest components were derived from LiDAR data within each of these layers. The statistical analyses, which included one-way analysis of variance with post hoc tests, identified effective variables for forest-type classifications. The results showed that using linear discriminant analysis, an overall classification accuracy of 91.4% (as verified by the cross-validation) was achieved in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.