Abstract

Availability, storage and transportation of engineered bone tissue fabricated in vitro are major practical problems associated with adequate use of bone replacement grafts for the treatment of bone diseases. The ability to maintain viable engineered bone tissue would facilitate future clinical applications. In the present study, we investigated time required for transportation of engineered bone removed from cool storage, from the culture room to the operating room; and examined effects of cool storage on survival of engineered bone tissue. Bone marrowcells were obtained from the iliac bone of a 60-year-old male affected with lumbar spondylosis, and then incubated in standard medium. After two weeks in primary culture, cultured cells were trypsinized, and a concentrated cell suspension was incubated with a porous beta-TCP block. After 3 weeks of subculture with the osteogenic medium containing dexamethasone etc., engineered bone tissue was collected, stored for 0, 6, 12, 24 hours at 4 °C, and was subcutaneously implanted into the back of nude mice. Six weeks after implantation, implants were harvested. Before and after implantation, significant activity could be detected in all animals. In in vitro and in vivo situations, osteogenic activity of engineered bone tissue could be maintained even after 24 hours. These results provided information on appropriate storage conditions for engineered bone tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.