Abstract

In this research we developed a micro-sized hierarchical structures on a poly(l-lactide) (PLLA) surface. The obtained structures consist of round-shaped protrusions with a diameter of ~20 μm, a height of ~3 μm, and the distance between them ~30 μm. We explored the effect of structuring PLLA to design a non-cytotoxic material with increased roughness to encourage cells to settle on the surface. The PLLA films were prepared using the casting melt extrusion technique and were modified using ultra-short pulse irradiation – a femtosecond laser operating at λ = 1030 nm. A hierarchical microstructure was obtained resembling ‘cookies on a tray’. The cellular response of fibro- and osteoblasts cell lines was investigated. The conducted research has shown that the laser-modified surface is more conducive to cell adhesion and growth (compared to unmodified surface) to such an extent that allows the formation of highly-selectively patterns consisting of living cells. In contrast to eukaryotic cells, the pathogenic bacteria Staphylococcus aureus covered modified and unmodified structures in an even, non-preferential manner. In turn, adhesion pattern of eukaryotic fungus Saccharomyces boulardii resembled that of fibro- and osteoblast cells rather than that of Staphylococcus. The discovered effect can be used for fabrication of personalized and smart implants in regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call