Abstract

COOH-terminal fragments of cholecystokinin varying in length from 1 to 3 amino acids and their NH 2-terminal butyloxycarbonyl derivatives were investigated for their ability to interact with the cholecystokinin receptor on dispersed acini from guinea pig pancreas. No fragment stimulated amylase secretion when present alone, but each of the butyloxycarbonyl derivatives and the COOH-terminal tripeptide amide inhibited the stimulation of enzyme secretion by cholecystokinin. In each case the inhibition was surmounted by increasing the concentration of cholecystokinin. Each fragment also inhibited binding of 125I-labeled cholecystokinin, with significant inhibition occurring with 30 μM butyloxycarbonyl tripeptide amide, 0.3 mM butyloxycarbonyl dipeptide amide, 10 mM butyloxycarbonyl phenylalanine amide and 3 mM tripeptide amide of cholecystokinin. In each case, there was a close correlation between the ability of the fragment to inhibit binding of 125I-labeled cholecystokinin and its ability to inhibit cholecystokinin-stimulated amylase release, cholecystokinin-stimulated 45Ca outflux and cholecystokinin-stimulated residual stimulation of amylase secretion. The inhibition of amylase secretion caused by the butyloxycarbonyl tripeptide of cholecystokinin was reversible and specific for those peptides which interact with the cholecystokinin receptor (i.e., cholecystokinin, caerulein, gastrin); it did not inhibit the actions of bombesin, carbachol, physalaemin, vasoactive intestinal peptide, secretin, PHI, ionophore A23187 or 8-bromo cyclic AMP. These results demonstrate that COOH-terminal fragments of cholecystokinin comprise a new class of cholecystokinin receptor antagonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.