Abstract

Miniaturized energy storage devices have attracted considerable research attention due to their promising applications such as power-on-chip units in various smart electronic devices. In this work, a printable micro-supercapacitor (MSC) device was designed and fabricated wherein a novel three dimensional (3D) nanocomposite consisting of cobalt oxide (CoO) nanoflowers woven with carbon nanotubes (CNTs) networks were used as the active material. The CoO/CNT nanocomposites were synthesized via a high-throughput hydrothermal method. High capacitance of 17.4F/cm3 and energy density of ~3.48mWh/cm3 were achieved for the CoO/CNT MSC at a current density of 0.25A/cm3. The high volumetric energy density is attributed to the widened operation voltage window ranging from 0 to 1.2V. Moreover, the printed CoO/CNT MSCs also showed remarkable cycling stability with ~85% energy density retention after 1700 cycles and high mechanical flexibility which can function well even after bending up to 180°. As a result, the printed CoO/CNT MSC is a possible contender in future energy storage devices for low-cost on-chip power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.