Abstract

The Magnus expansion is a universal finite type invariant of pure braids with values in the space of horizontal chord diagrams. The Conway polynomial composed with the short circuit map from braids to knots gives rise to a series of finite type invariants of pure braids and thus factors through the Magnus map. We describe explicitly the resulting mapping from horizontal chord diagrams on 3 strands to univariate polynomials and evaluate it on the Drinfeld associator obtaining, conjecturally, a beautiful generating function whose coefficients are integer combinations of multiple zeta values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.