Abstract
Physical nonlinear systems are typically characterized with n-fold convolution of the Green’s function, e.g., nonlinear oscillators, inhomogeneous media, and scattering theory in continuum and quantum mechanics. A novel stochastic computation method based on orthogonal expansions of random fields has been recently proposed [1]. In this study, the idea of orthogonal expansion is formalized as the so-called nth-order convolved orthogonal expansion (COE) method, especially in dealing with random processes in time. Although the paper is focused on presentation of the properties of the convolved random basis processes, examples are also provided to demonstrate application of the COE method to random vibration problems. In addition, the relation to the classical Volterra-type expansions is discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.