Abstract
Ruscheweyh and Sheil-Small proved that convexity is preserved under the convolution of univalent analytic mappings in K. However, when we consider the convolution of univalent harmonic convex mappings in , this property does not hold. In fact, such convolutions may not be univalent. We establish some results concerning the convolution of univalent harmonic convex mappings provided that it is locally univalent. In particular, we show that the convolution of a right half-plane mapping in with either another right half-plane mapping or a vertical strip mapping in is convex in the direction of the real axis. Further, we give a condition under which the convolution of a vertical strip mapping in with itself will be convex in the direction of the real axis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Complex Variables, Theory and Application: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.