Abstract

Like other applications in computer vision, medical image segmentation and his email address have been most successfully addressed using deep learning models that rely on the convolution operation as their main building block. Convolutions enjoy important properties such as sparse interactions, weight sharing, and translation equivariance. These properties give convolutional neural networks (CNNs) a strong and useful inductive bias for vision tasks. However, the convolution operation also has important shortcomings: it performs a fixed operation on every test image regardless of the content and it cannot efficiently model long-range interactions. In this work we show that a network based on self-attention between neighboring patches and without any convolution operations can achieve better results. Given a 3D image block, our network divides it into \(n^3\) 3D patches, where \(n=3 \text { or } 5\) and computes a 1D embedding for each patch. The network predicts the segmentation map for the center patch of the block based on the self-attention between these patch embeddings. We show that the proposed model can achieve higher segmentation accuracies than a state of the art CNN. For scenarios with very few labeled images, we propose methods for pre-training the network on large corpora of unlabeled images. Our experiments show that with pre-training the advantage of our proposed network over CNNs can be significant when labeled training data is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call