Abstract

Fault diagnosis of bearings in rotating machinery is a critical task. Vibration signals are a valuable source of information, but they can be complex and noisy. A transformer model can capture distant relationships, which makes it a promising solution for fault diagnosis. However, its application in this field has been limited. This study aims to contribute to this growing area of research by proposing a novel deep-learning architecture that combines the strengths of CNNs and transformer models for effective fault diagnosis in rotating machinery. Thus, it captures both local and long-range temporal dependencies in the vibration signals. The architecture starts with CNN-based feature extraction, followed by temporal relationship modelling using the transformer. The transformed features are used for classification. Experimental evaluations are conducted on two datasets with six and ten health conditions. In both case studies, the proposed model achieves high accuracy, precision, recall, F1-score, and specificity all above 99% using different training dataset sizes. The results demonstrate the effectiveness of the proposed method in diagnosing bearing faults. The convolutional-transformer model proves to be a promising approach for bearing fault diagnosis. The method shows great potential for improving the accuracy and efficiency of fault diagnosis in rotating machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.