Abstract

This paper proposes a sound event detection (SED) method in tunnels to prevent further uncontrollable accidents. Tunnel accidents are accompanied by crashes and tire skids, which usually produce abnormal sounds. Since the tunnel environment always has a severe level of noise, the detection accuracy can be greatly reduced in the existing methods. To deal with the noise issue in the tunnel environment, the proposed method involves the preprocessing of tunnel acoustic signals and a classifier for detecting acoustic events in tunnels. For preprocessing, a non-negative tensor factorization (NTF) technique is used to separate the acoustic event signal from the noisy signal in the tunnel. In particular, the NTF technique developed in this paper consists of source separation and online noise learning. In other words, the noise basis is adapted by an online noise learning technique for enhancement in adverse noise conditions. Next, a convolutional recurrent neural network (CRNN) is extended to accommodate the contributions of the separated event signal and noise to the event detection; thus, the proposed CRNN is composed of event convolution layers and noise convolution layers in parallel followed by recurrent layers and the output layer. Here, a set of mel-filterbank feature parameters is used as the input features. Evaluations of the proposed method are conducted on two datasets: a publicly available road audio events dataset and a tunnel audio dataset recorded in a real traffic tunnel for six months. In the first evaluation where the background noise is low, the proposed CRNN-based SED method with online noise learning reduces the relative recognition error rate by 56.25% when compared to the conventional CRNN-based method with noise. In the second evaluation, where the tunnel background noise is more severe than in the first evaluation, the proposed CRNN-based SED method yields superior performance when compared to the conventional methods. In particular, it is shown that among all of the compared methods, the proposed method with the online noise learning provides the best recognition rate of 91.07% and reduces the recognition error rates by 47.40% and 28.56% when compared to the Gaussian mixture model (GMM)–hidden Markov model (HMM)-based and conventional CRNN-based SED methods, respectively. The computational complexity measurements also show that the proposed CRNN-based SED method requires a processing time of 599 ms for both the NTF-based source separation with online noise learning and CRNN classification when the tunnel noisy signal is one second long, which implies that the proposed method detects events in real-time.

Highlights

  • Millions of sensors have been deployed in almost all urban areas, industrial facilities, and other environments that are rapidly increasing in volume and scope [1]

  • The performance of theMoreover, proposed method was evaluated on the separation with online noise learning on the various methods including the proposed one was evaluation dataset that was recorded inside a tunnel

  • Each classifier was trained by the tunnel sound event dataset explained in basedalso source separation with online noise learning on the various sound event detection (SED) methods including the Section 4.1

Read more

Summary

Introduction

Millions of sensors have been deployed in almost all urban areas, industrial facilities, and other environments that are rapidly increasing in volume and scope [1]. Sensors 2018, 18, x FOR PEER REVIEW and other environments that are rapidly increasing in volume and scope [1]. Monitoring human activities requires a tremendous amount of amount resources. This end,Toresearch onresearch automated monitoring human activities requires a tremendous of To resources This end, on surveillance has progressed rapidly, focusing on video-on orvideoimage-based approaches operating in realautomated surveillance has progressed rapidly, focusing or image-based approaches operating world environments [2]. To overcome this disadvantage, different types have of sensors isdata insufficient and error

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.