Abstract
Image ordinal estimation is to predict the ordinal label of a given image, which can be categorized as an ordinal regression (OR) problem. Recent methods formulate an OR problem as a series of binary classification problems. Such methods cannot ensure that the global ordinal relationship is preserved since the relationships among different binary classifiers are neglected. We propose a novel OR approach, termed convolutional OR forest (CORF), for image ordinal estimation, which can integrate OR and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships. The advantages of the proposed CORF are twofold. First, instead of learning a series of binary classifiers independently, the proposed method aims at learning an ordinal distribution for OR by optimizing those binary classifiers simultaneously. Second, the differentiable decision trees in the proposed CORF can be trained together with the ordinal distribution in an end-to-end manner. The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, i.e., facial age estimation and image esthetic assessment, showing significant improvements and better stability over the state-of-the-art OR methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.