Abstract

Microseismic data have a low signal-to-noise ratio (S/N). Existing waveform classification and arrival-picking methods are not effective enough for noisy microseismic data with low S/N. We have adopted a novel antinoise classifier for waveform classification and arrival picking by combining the continuous wavelet transform (CWT) and the convolutional neural network (CNN). The proposed CWT-CNN classifier is applied to synthetic and field microseismic data sets. Results show that CWT-CNN classifier has much better performance than the basic deep feedforward neural network (DNN), especially for microseismic data with low S/N. The CWT-CNN classifier has a shallow network architecture and small learning data set, and it can be trained quickly for different data sets. We have determined why CWT-CNN has better performance for noisy microseismic data. CWT can decompose the microseismic data into time-frequency spectra, where effective signals and interfering noise are easier to distinguish. With the help of CWT, CNN can focus on the specific frequency components to extract useful features and build a more effective classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.