Abstract

Exact numerical simulations of dynamics of open quantum systems often require immense computational resources. We demonstrate that a deep artificial neural network composed of convolutional layers is a powerful tool for predicting long-time dynamics of open quantum systems provided the preceding short-time evolution of a system is known. The neural network model developed in this work simulates long-time dynamics efficiently and accurately across different dynamical regimes from weakly damped coherent motion to incoherent relaxation. The model was trained on a data set relevant to photosynthetic excitation energy transfer and can be deployed to study long-lasting quantum coherence phenomena observed in light-harvesting complexes. Furthermore, our model performs well for the initial conditions different than those used in the training. Our approach reduces the required computational resources for long-time simulations and holds the promise for becoming a valuable tool in the study of open quantum systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.