Abstract

To demonstrate the feasibility and performance of an object detection convolutional neural network (CNN) for fracture detection and localization on wrist radiographs. Institutional review board approval was obtained with waiver of consent for this retrospective study. A total of 7356 wrist radiographic studies were extracted from a hospital picture archiving and communication system. Radiologists annotated all radius and ulna fractures with bounding boxes. The dataset was split into training (90%) and validation (10%) sets and used to train fracture localization models for frontal and lateral images. Inception-ResNet Faster R-CNN architecture was implemented as a deep learning model. The models were tested on an unseen test set of 524 consecutive emergency department wrist radiographic studies with two radiologists in consensus as the reference standard. Per-fracture, per-image (ie, per-view), and per-study sensitivity and specificity were determined. Area under the receiver operating characteristic curve (AUC) analysis was performed. The model detected and correctly localized 310 (91.2%) of 340 and 236 (96.3%) of 245 of all radius and ulna fractures on the frontal and lateral views, respectively. The per-image sensitivity, specificity, and AUC were 95.7% (95% confidence interval [CI]: 92.4%, 97.8%), 82.5% (95% CI: 77.4%, 86.8%), and 0.918 (95% CI: 0.894, 0.941), respectively, for the frontal view and 96.7% (95% CI: 93.6%, 98.6%), 86.4% (95% CI: 81.9%, 90.2%), and 0.933 (95% CI: 0.912, 0.954), respectively, for the lateral view. The per-study sensitivity, specificity, and AUC were 98.1% (95% CI: 95.6%, 99.4%), 72.9% (95% CI: 67.1%, 78.2%), and 0.895 (95% CI: 0.870, 0.920), respectively. The ability of an object detection CNN to detect and localize radius and ulna fractures on wrist radiographs with high sensitivity and specificity was demonstrated.© RSNA, 2019.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call