Abstract
Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimensions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, addressing issues previously faced by other computational methods. With the rising attention for personalized and precision medicine, scientists and clinicians have now turned to artificial intelligence systems to provide them with solutions for therapeutics development. CNNs have already provided valuable insights into biological data transformation. Due to the rise of interest in precision and personalized medicine, in this review, we have provided a brief overview of the possibilities of implementing CNNs as an effective tool for analyzing one-dimensional biological data, such as nucleotide and protein sequences, as well as small molecular data, e.g., simplified molecular-input line-entry specification, InChI, binary fingerprints, etc., to categorize the models based on their objective and also highlight various challenges. The review is organized into specific research domains that participate in pharmacogenomics for a more comprehensive understanding. Furthermore, the future intentions of deep learning are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.