Abstract
Remote sensing (RS) scene classification has wide applications in the environmental monitoring and geological survey. In the real-world applications, the RS scene images taken by the satellite might have two scenarios: clear and cloudy environments. However, most of existing methods did not consider these two environments simultaneously. In this paper, we assume that the global and local features are discriminative in either clear or cloudy environments. Many existing Convolution Neural Networks (CNN) based models have made excellent achievements in the image classification, however they somewhat ignored the global and local features in their network structure. In this paper, we pro-pose a new CNN based network (named GLNet) with the Global Encoder and Local Encoder to extract the discriminative global and local features for the RS scene classification, where the constraints for inter-class dispersion and intra-class compactness are embedded in the GLNet training. The experimental results on two publicized RS scene classification datasets show that the proposed GLNet could achieve better performance based on many existing CNN backbones under both clear and cloudy environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.