Abstract

To address the open and diverse situation of future optical networks, it is necessary to find a methodology to accurately estimate the value of a target quantity in an optical performance monitor (OPM) depending on the high-level monitoring objectives declared by the network operator. Using machine learning techniques partially enables a trainable OPM; however, it still requires the feature selection before the learning process. Here, we show the OPM that uses a convolutional neural network (CNN) with a digital coherent receiver to deal with the abundance of training data required for convergence and pre-processing of input data by human engineers needed for feature (representation) extraction. To proof a concept of the OPM based on CNN, we experimentally demonstrate that a CNN can learn an accurate optical signal-to-noise-ratio (OSNR) estimation functionality from asynchronously sampled data right after intradyne coherent detection. We evaluate bias errors and standard deviations of a CNN-based OSNR estimator for six combinations of modulation formats and symbol rates and confirm that the proposed OSNR estimator can provide accurate estimation results (<0.4 dB bias errors and standard deviations). Additionally, we investigate filters in the trained CNN to reveal what the CNN learned in the training phase. This is a valuable step toward designing autonomous self-driving optical networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call