Abstract

PurposeTo develop and evaluate the performance of a fully-automated convolutional neural network (CNN)-based algorithm to evaluate hepatobiliary phase (HBP) adequacy of gadoxetate disodium (EOB)-enhanced MRI. Secondarily, we explored the potential of the proposed CNN algorithm to reduce examination length by applying it to EOB-MRI examinations. MethodsWe retrospectively identified EOB-enhanced MRI-HBP series from examinations performed 2011–2018 (internal and external datasets). Our algorithm, comprising a liver segmentation and classification CNN, produces an adequacy score. Two abdominal radiologists independently classified series as adequate or suboptimal. The consensus determination of HBP adequacy was used as ground truth for CNN model training and validation. Reader agreement was evaluated with Cohen’s kappa. Performance of the algorithm was assessed by receiver operating characteristics (ROC) analysis and computation of the area under the ROC curve (AUC). Potential examination duration reduction was evaluated descriptively. Results1408 HBP series from 484 patients were included. Reader kappa agreement was 0.67 (internal dataset) and 0.80 (external dataset). AUCs were 0.97 (0.96-0.99) for internal and 0.95 (0.92–96) for external and were not significantly different from each other (p = 0.24). 48 % (50/105) examinations could have been shorter by applying the algorithm. ConclusionA proposed CNN-based algorithm achieves higher than 95 % AUC for classifying HBP images as adequate versus suboptimal. The application of this algorithm could potentially shorten examination time and aid radiologists in recognizing technically suboptimal images, avoiding diagnostic pitfalls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.