Abstract

Classification of dynamic functional connectivity (DFC) is becoming a promising approach for diagnosing various neurodegenerative diseases. However, the existing methods generally face the problem of overfitting. To solve it, this paper proposes a convolutional neural network with three sparse strategies named SCNN to classify DFC. Firstly, an element-wise filter is designed to impose sparse constraints on the DFC matrix by replacing the redundant elements with zeroes, where the DFC matrix is specially constructed to quantify the spatial and temporal variation of DFC. Secondly, a 1×1 convolutional filter is adopted to reduce the dimensionality of the sparse DFC matrix, and remove meaningless features resulted from zero elements in the subsequent convolution process. Finally, an extra sparse optimization classifier is employed to optimize the parameters of the above two filters, which can effectively improve the ability of SCNN to extract discriminative features. Experimental results on multiple resting-state fMRI datasets demonstrate that the proposed model provides a better classification performance of DFC compared with several state-of-the-art methods, and can identify the abnormal brain functional connectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.