Abstract

The Coronavirus disease 2019, or COVID-19, has shifted the medical paradigm from face-to-face to telehealth. Telehealth has become a vital resource to contain the virus spread and ensure the continued care of patients. In terms of preventing cardiovascular diseases, automating electrocardiogram (ECG) classification is a promising telehealth intervention. The healthcare service ensures that patient care is appropriate, comfortable, and accessible. Convolutional neural networks (CNNs) have demonstrated promising results in ECG categorization, which require high accuracy and short training time to ensure healthcare quality. This study proposes a one-dimensional-CNN (1D-CNN) arrhythmia classification based on the differential evolution (DE) algorithm to optimize the accuracy of ECG classification and training time. The performance of 1D-CNNs of different activation functions are optimized based on the standard DE algorithm. Finally, based on MIT-BIH and SCDH arrhythmia databases, the performances of optimized and unoptimized 1D-CNN are compared and analysed. Results show that the 1D-CNN optimized by the DE has higher accuracy in heartbeats classification. The optimized 1D-CNN improves from 97.6% to 99.5% on MIT-BIH and from 80.2% to 88.5% on SCDH. Therefore, the optimized 1D-CNN shows improvements of 1.9% and 8.3% in the two datasets, respectively. In addition, compared with the unoptimized 1D-CNN based on the same parameter settings, the optimized 1D-CNN has less training time. Under the conditions of ReLU function and 10 epochs, the training takes 9.22s on MIT-BIH and 10.35s on SCDH, reducing training time by 67.2% and 64.2%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.