Abstract
Automatic skull identification systems play a vital role for forensic law authorities to recognize victim identity. Motivated by potential applications of these kinds of systems, this research aims to apply a pre-trained deep convolutional neural network (CNN) for face skull recognition. Basically, the unknown skull image is fed to a pre-trained CNN network to extract a 1D feature vector, and then it will be matched with photos at database agencies to identify the closest match. To validate the proposed skull recognition system, it has been applied for a total of 13 skulls, and the reported results indicated a good was achieved. In addition, various CNN architectures were investigated, including shallow, medium, and deep CNN models. The best performance was reported from the shallow CNN model with a 92% recognition rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.