Abstract

AbstractIn the current state of the art of process industries/manufacturing technologies, computer‐instrumented and computer‐controlled autonomous techniques are necessary for damage diagnosis and prognosis in operating machinery. From this perspective, the paper addresses the issue of fatigue damage that is one of the most encountered sources of degradation in polycrystalline‐alloy structures of machinery components. In this paper, the convolutional neural networks (CNNs) are applied to synergistic combinations of ultrasonic measurements and images from a confocal microscope (Alicona) to detect and evaluate the risk of fatigue damage. The database of the Alicona has been used to calibrate the ultrasonic database and to provide the ground truth for fatigue damage assessment. The results show that both the ultrasonic data and Alicona images are capable of classifying the fatigue damage into their respective classes with considerably high accuracy. However, the ultrasonic CNN model yields better accuracy than the Alicona CNN model by almost 9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.