Abstract

Accurate localization of lung tumor in real time based on a single X-ray projection is of great interest to the tumor-tracking radiotherapy but is very challenging. In this paper, a convolutional neural network (CNN)-based tumor localization method was proposed to address this problem with the aid of principal component analysis-based motion modeling. A CNN regression model was trained before treatment to recover the ill-conditioned nonlinear mapping from the single X-ray projection to the tumor motion. Novel intensity correction and data augmentation techniques were adopted to improve the model's robustness to the scatter and noise in the X-ray projection image. During treatment, the volumetric image and tumor position could be obtained by applying the CNN model on the acquired X-ray projection. This method was validated and compared with the other state-of-the-art methods on three real patient data. It was found that the proposed method could achieve real-time tumor localization with much higher accuracy (<;1 mm) and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.