Abstract

Many fields, such as remote sensing, medical imaging, and biological detection, pose a technical challenge for achieving super-resolution imaging. Convolutional neural networks (CNNs) are considered one of the potential solutions to realize the super-resolution. In this paper three-layer, CNN-based models are proposed to reconstruct the super-resolution images using four optimization algorithms, i.e., stochastic gradient descent, adaptive gradient (AdaGrad), root mean square prop (RMSprop), and adaptive moment estimation (ADAM). Among these four optimizations, ADAM is considered to have the best performance. To further verify the impact of the number of convolution layers on performance, a selection of CNN-based models with four convolutional layers is then proposed, each of which is named with the convolution parameters. All the four-layer models are optimized with ADAM, and the experimental results indicate that the 9-3-3-5 model achieves the best performance in the super-resolution reconstruction task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.