Abstract

Colloidal self-assembly is a viable solution to making advanced metamaterials. While the physicochemical properties of the particles affect the properties of the assembled structures, particle configuration is also a critical determinant factor. Colloidal self-assembly state classification is typically achieved with order parameters, which are aggregate variables normally defined with nontrivial exploration and validation. Here, we present an image-based framework to classify the state of a 2-D colloidal self-assembly system. The framework leverages deep learning algorithms with unsupervised learning for state classification and a supervised learning-based convolutional neural network for state prediction. The neural network models are developed using data from an experimentally validated Brownian dynamics simulation. Our results demonstrate that the proposed approach gives a satisfying performance, comparable and even outperforming the commonly used order parameters in distinguishing void defective states from ordered states. Given the data-based nature of the approach, we anticipate its general applicability and potential automatability to different and complex systems where image or particle coordination acquisition is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.