Abstract

The metal additive manufacturing (AM) process has proven its capability to produce complex, near-net-shape products with minimal wastage. However, due to its poor surface quality, most applications demand the post-processing of AM-built components. This study proposes a method that combines convolutional neural network (CNN) classification followed by electrical discharge-assisted post-processing to improve the surface quality of AMed components. The polishing depth and passes were decided based on the surface classification. Through comparison, polishing under a low-energy regime was found to perform better than the high-energy regimes with a significant improvement of 74% in surface finish. Also, lower energy polishing reduced the occurrences of short-circuit discharges and elemental migration. A 5-fold cross-validation was performed to validate the models, and the results showed that the CNN model predicts the surface condition with 96% accuracy. Also, the proposed approach improved the surface finish substantially from 97.3 to 12.62 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call