Abstract
BackgroundSince three-dimensional segmentation of cardiac region in 123I-metaiodobenzylguanidine (MIBG) study has not been established, this study aimed to achieve organ segmentation using a convolutional neural network (CNN) with 123I-MIBG single photon emission computed tomography (SPECT) imaging, to calculate heart counts and washout rates (WR) automatically and to compare with conventional quantitation based on planar imaging.MethodsWe assessed 48 patients (aged 68.4 ± 11.7 years) with heart and neurological diseases, including chronic heart failure, dementia with Lewy bodies, and Parkinson's disease. All patients were assessed by early and late 123I-MIBG planar and SPECT imaging. The CNN was initially trained to individually segment the lungs and liver on early and late SPECT images. The segmentation masks were aligned, and then, the CNN was trained to directly segment the heart, and all models were evaluated using fourfold cross-validation. The CNN-based average heart counts and WR were calculated and compared with those determined using planar parameters. The CNN-based SPECT and conventional planar heart counts were corrected by physical time decay, injected dose of 123I-MIBG, and body weight. We also divided WR into normal and abnormal groups from linear regression lines determined by the relationship between planar WR and CNN-based WR and then analyzed agreement between them.ResultsThe CNN segmented the cardiac region in patients with normal and reduced uptake. The CNN-based SPECT heart counts significantly correlated with conventional planar heart counts with and without background correction and a planar heart-to-mediastinum ratio (R2 = 0.862, 0.827, and 0.729, p < 0.0001, respectively). The CNN-based and planar WRs also correlated with and without background correction and WR based on heart-to-mediastinum ratios of R2 = 0.584, 0.568 and 0.507, respectively (p < 0.0001). Contingency table findings of high and low WR (cutoffs: 34% and 30% for planar and SPECT studies, respectively) showed 87.2% agreement between CNN-based and planar methods.ConclusionsThe CNN could create segmentation from SPECT images, and average heart counts and WR were reliably calculated three-dimensionally, which might be a novel approach to quantifying SPECT images of innervation.
Highlights
Estimating sympathetic nervous activity using 123I-metaiodobenzylguanidine (MIBG) is a valuable adjunct for assessing the severity, prognosis, and effects of treatment for heart failure, arrhythmogenic disease, and neurological diseases such as dementia with Lewy bodies and Parkinson’s disease [1,2,3,4,5,6,7,8].The heart-to-mediastinum ratio (HMR) and washout rate (WR) in planar images are common indicators of sympathetic nervous activity [9]
Depending on the method of regions of interest (ROI) definition, up to about 40% of results might located lying in a gray zone around the cutoff, through which normal and abnormal innervation are differentiated in the clinical context [12]
The convolutional neural network (CNN) method did not generate sub-diaphragmatic artifacts, and liver and heart segmentation did not overlap in any patients
Summary
Estimating sympathetic nervous activity using 123I-metaiodobenzylguanidine (MIBG) is a valuable adjunct for assessing the severity, prognosis, and effects of treatment for heart failure, arrhythmogenic disease, and neurological diseases such as dementia with Lewy bodies and Parkinson’s disease [1,2,3,4,5,6,7,8]. The heart-to-mediastinum ratio (HMR) and washout rate (WR) in planar images are common indicators of sympathetic nervous activity [9]. Since three-dimensional segmentation of cardiac region in 123I-metaiodobenzylguanidine (MIBG) study has not been established, this study aimed to achieve organ segmentation using a convolutional neural network (CNN) with 123I-MIBG single photon emission computed tomography (SPECT) imaging, to calculate heart counts and washout rates (WR) automatically and to compare with conventional quantitation based on planar imaging
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.