Abstract

In this paper, we propose a convolutional neural network (CNN) and clustering-based codebook design method. Specifically, we train two different CNNs, i.e., CNN1 and CNN2, to compress the channel state information (CSI) matrices into the channel vectors and recover the channel vectors back into the CSI matrices, respectively. After that, the clustering algorithm clusters the output of CNN1, i.e., the channel vectors into several clusters and outputs a centroid for each cluster. The sum distance between each centroid and the channel vectors in the corresponding cluster is the smallest, which can lead to the maximum sum rate of massive MIMO codebook design. Then, the centroids are recovered into matrices by CNN2. The output of CNN2 is our proposed codebook for massive multiple-input multiple-output (MIMO) systems. In the simulation, we compare the performance of different clustering algorithms. We also compare the proposed codebook with the traditional discrete Fourier transform (DFT) codebook. Simulation results show the superiority of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.