Abstract

Automated Visual Inspection (AVI) systems for metal surface inspection is increasingly used in industries to aid human visual inspectors for classification of possible anomalies. For classification, the challenge lies in having a small and specific dataset that may easily result in over-fitting. As a solution, we propose to use deep Convolutional Neural Networks (ConvNets) learnt from the large ImageNet dataset [9] for image representations via transfer learning. Since a small dataset cannot be used to fine-tune a ConvNet due to overfitting, we also propose a Majority Voting Mechanism (MVM), which fuses the features extracted from the last three layers of ConvNets using Support Vector Machine (SVM) classifiers. This classification framework is effective where no prior knowledge of the best performing ConvNet layers is needed. This also allows flexibility in the choice of ConvNet used for feature extraction. The proposed method not only outperforms state-of-the-art traditional hand-crafted features in terms of classification but also obtains good results compared to other deep ConvNet features extracted from a pre-selected best layer on several anomaly and texture datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.