Abstract
We developed a Convolutional LSTM (ConvLSTM) network to predict shoulder joint reaction forces using 3D shoulder kinematics data containing 30 different shoulder activities from eight human subjects. We considered simulation outcomes from the AnyBody musculoskeletal model as the baseline force dataset to validate ConvLSTM model predictions. Results showed a good correlation (>80% accuracy, r ≥ 0.82) between ConvLSTM predicted and AnyBody estimated force values, the generalization of the developed model for novel task type (p-value = 0.07 ∼ 0.33), and a better prediction accuracy for the ConvLSTM model than conventional CNN and LSTM models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.