Abstract
The maintenance of an uninterrupted electricity supply to meet demand is of paramount importance for maintaining the stable operation of an electrical power system. Machine learning and deep learning play a crucial role in maintaining that stable operation. These algorithms have the ability to acquire knowledge from past data, enabling them to efficiently identify and forecast potential scenarios of instability in the future. This work presents a hybrid convolutional long short-term memory (ConvLSTM) technique for training and predicting nodal voltage stability in an IEEE 14-bus microgrid. Analysis of the findings shows that the suggested ConvLSTM model exhibits the highest level of precision, reaching a value of 97.65%. Furthermore, the ConvLSTM model has been shown to perform better compared to alternative machine learning and deep learning models such as convolutional neural networks, k-nearest neighbors, and support vector machine models, specifically in terms of accurately forecasting voltage stability. The IEEE 14-bus system tests indicate that the suggested method can quickly and accurately determine the stability status of the system. The comparative analysis obtained the results and further justified the efficiency and voltage stability of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.