Abstract

Deep learning based methods have achieved unprecedented success in solving several computer vision problems involving RGB images. However, this level of success is yet to be seen on RGB-D images owing to two major challenges in this domain: training data deficiency and multi-modality input dissimilarity. We present an RGB-D object recognition framework that addresses these two key challenges by effectively embedding depth and point cloud data into the RGB domain. We employ a convolutional neural network (CNN) pre-trained on RGB data as a feature extractor for both color and depth channels and propose a rich coarse-to-fine feature representation scheme, coined Hypercube Pyramid, that is able to capture discriminatory information at different levels of detail. Finally, we present a novel fusion scheme to combine the Hypercube Pyramid features with the activations of fully connected neurons to construct a compact representation prior to classification. By employing Extreme Learning Machines (ELM) as non-linear classifiers, we show that the proposed method outperforms ten state-of-the-art algorithms for several tasks in terms of recognition accuracy on the benchmark Washington RGB-D and 2D3D object datasets by a large margin (upto 50% reduction in error rate).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call