Abstract

<span lang="EN-US">In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm.</span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call