Abstract

A convolution surface is an isosurface in a scalar field defined by convolving a skeleton, comprising of points, curves, surfaces, or volumes, with a potential function. While convolution surfaces are attractive for modeling natural phenomena and objects of complex evolving topology, the analytical evaluation of integrals of convolution models still poses some open problems. This paper presents some novel analytical convolution solutions for arcs and quadratic spline curves with a varying kernel. In addition, we approximate planar higher-degree polynomial spline curves by optimal arc splines within a prescribed tolerance and sum the potential functions of all the arc primitives to approximate the field for the entire spline curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.