Abstract

We study convolution powers $\mathtt{id}^{\ast n}$ of the identity of graded connected Hopf algebras $H$. (The antipode corresponds to $n=-1$.) The chief result is a complete description of the characteristic polynomial - both eigenvalues and multiplicity - for the action of the operator $\mathtt{id}^{\ast n}$ on each homogeneous component $H_m$. The multiplicities are independent of $n$. This follows from considering the action of the (higher) Eulerian idempotents on a certain Lie algebra $\mathfrak{g}$ associated to $H$. In case $H$ is cofree, we give an alternative (explicit and combinatorial) description in terms of palindromic words in free generators of $\mathfrak{g}$. We obtain identities involving partitions and compositions by specializing $H$ to some familiar combinatorial Hopf algebras. Nous étudions les puissances de convolution $\mathtt{id}^{\ast n}$ de l’identité d’une algèbre de Hopf graduée et connexe $H$ quelconque. (L’antipode correspond à $n=-1$.) Le résultat principal est une description complète du polynôme caractéristique (des valeurs propres et de leurs multiplicités) de l’opérateur $\mathtt{id}^{\ast n}$ agissant sur chaque composante homogène $H_m$. Les multiplicités sont indépendants de $n$. Ceci résulte de l’examen de l’action des idempotents eulériens (supérieures) sur une algèbre de Lie $\mathfrak{g}$ associée à $H$. Dans le cas où $H$ est colibre, nous donnons une description alternative (explicite et combinatoire) en termes de mots palindromes dans les générateurs libres de $\mathfrak{g}$. Nous obtenons des identités impliquant des partitions et compositions en choisissant comme $H$ certaines algèbres de Hopf combinatoires connues.

Highlights

  • As the practice of algebraic combinatorics often involves breaking and joining like combinatorial structures, it is right to say that bialgebras are ubiquitous in the theory

  • There is a general result stating that the bialgebras built within algebraic combinatorics are automatically Hopf algebras

  • We prove in Corollary 5 that in case H is graded connected, the eigenvalues of the antipode are always ±1, regardless ofcommutativity, even if S may have infinite order on any homogeneous component

Read more

Summary

Introduction

As the practice of algebraic combinatorics often involves breaking and joining like combinatorial structures (planar trees, permutations, set partitions, etc.), it is right to say that bialgebras are ubiquitous in the theory. The antipode problem (Aguiar and Mahajan, 2013, Section 5.4) asks for explicit knowledge of the antipode This can be a source of interesting combinatorial results. We prove in Corollary 5 that in case H is graded connected, the eigenvalues of the antipode are always ±1, regardless of (co)commutativity, even if S may have infinite order on any homogeneous component. This is a consequence of our main result (Theorem 4), which provides a complete description of the characteristic polynomial for the convolution power id∗n acting on each homogeneous component of H.

Hopf and Lie preliminaries
Coradical filtration and primitive elements
Antipode and Eulerian idempotents
Characteristic polynomials for convolution powers
The trace of the antipode and palindromic words
Schur indicators
Symmetric functions
Schur P -functions
Quasisymmetric functions
Peak quasisymmetric functions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.