Abstract
We consider the framework of an operator-valued noncommutative probability space over a unital C*-algebra B. We show how for a B-valued distribution \mu one can define convolution powers with respect to free additive convolution and with respect to Boolean convolution, where the exponent considered in the power is a suitably chosen linear map \eta from B to B, instead of being a non-negative real number. More precisely, the Boolean convolution power is defined whenever \eta is completely positive, while the free additive convolution power is defined whenever \eta - 1 is completely positive (where 1 stands for the identity map on B). In connection to these convolution powers we define an evolution semigroup related to the Boolean Bercovici-Pata bijection. We prove several properties of this semigroup, including its connection to the B-valued free Brownian motion. We also obtain two results on the operator-valued analytic function theory related to the free additive convolution powers with exponent \eta. One of the results concerns analytic subordination for B-valued Cauchy-Stieltjes transforms. The other gives a B-valued version of the inviscid Burgers equation, which is satisfied by the Cauchy-Stieltjes transform of a B-valued free Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.