Abstract
We study the convolution operators Tμ acting on the group algebras L1(G) and M(G), where G is a locally compact abelian group and μ is a complex Borel measure on G. We show that a cotauberian convolution operator Tμ acting on L1(G) is Fredholm of index zero, and that Tμ is tauberian if and only if so is the corresponding convolution operator acting on the algebra of measures M(G), and we give some applications of these results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.