Abstract
Deep learning technology is changing the landscape of cybersecurity research, especially the study of large amounts of data. With the rapid growth in the number of malware, developing of an efficient and reliable method for classifying malware has become one of the research priorities. In this paper, a new method, BIR-CNN, is proposed to classify of Android malware. It combines convolution neural network (CNN) with batch normalization and inception-residual (BIR) network modules by using 347-dim network traffic features. CNN combines inception-residual modules with a convolution layer that can enhance the learning ability of the model. Batch Normalization can speed up the training process and avoid over-fitting of the model. Finally, experiments are conducted on the publicly available network traffic dataset CICAndMal2017 and compared with three traditional machine learning algorithms and CNN. The accuracy of BIR-CNN is 99.73% in binary classification (2-classifier). Moreover, the BIR-CNN can classify malware by its category (4-classifier) and malicious family (35-classifier), with a classification accuracy of 99.53% and 94.38%, respectively. The experimental results show that the proposed model is an effective method for Android malware classification, especially in malware category and family classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.