Abstract
It is always beneficial to reassess the previously done work to create interest and develop understanding about the subject in importance. In computer vision, to perform the task of feature extraction, classification or segmentation, measurement and assessment of image structures (medical images, natural images etc.) is to be done very efficiently. In the field of image processing numerous techniques are available, but it is very difficult to perform these tasks due to noise and other variable artifacts. Various Deep machine learning algorithms are used to perform complex task of recognition and computer vision. Recently Convolutional Neural Networks (CNNs-back bone of numerous deep learning algorithms) have shown state of the art performance in high level computer vision tasks, such as object detection, object recognition, classification, machine translation, semantic segmentation, speech recognition, scene labelling, medical imaging, robotics and control, , natural language processing (NLP), bio-informatics, cybersecurity, and many others. Convolution neural networks is the attempt to combine mathematics to computer science with icing of biology on it. CNNs work in two parts. The first part is mathematics that supports feature extraction and second part is about classification and prediction at pixel level. This review is intended for those who want to grab the complete knowledge about CNN, their development form ancient age to modern state of art system of deep learning system. This review paper is organized in three steps: in the first step introduction about the concept is given along with necessary background information. In the second step other highlights and related work proposed by various authors is explained. Third step is the complete layer wise architecture of convolution networks. The last section is followed by detailed discussion on improvements, and challenges on these deep learning techniques. Most papers consider for this review are later than 2012 from when the history of convolution neural networks and deep learning begins
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.