Abstract
In this article, we define a convoluted fractional Poisson process of order k (CFPPoK), which is governed by the discrete convolution operator in the system of fractional differential equations. Next, we obtain its one-dimensional distribution by using the Laplace transform of its state probabilities. Various distributional properties, such as probability generating function, moment generating function and moments, are derived. A special case of CFPPoK, (say) convoluted Poisson process of order k (CPPoK) is studied and also established Martingale characterization for CPPoK. We further derive the covariance structure of CFPPoK and investigate the long-range dependence property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.