Abstract

Thus far, few studies have been conducted on fine-grained classification tasks for the latest convolutional neural network ConvNeXt, and no effective optimization method has been made available. To achieve more accurate fine-grained classification, this paper proposes two attention embedding methods based on ConvNeXt network and designs a new bilinear CBAM; simultaneously, a multiscale, multi-perspective and all-around attention framework is proposed, which is then applied in ConvNeXt. Experimental verification shows that the accuracy rate of the improved ConvNeXt for fine-grained image classification reaches 87.8%, 91.2%, and 93.2% on fine-grained classification datasets CUB-200-2011, Stanford Cars, and FGVC Aircraft, respectively, showing increases of 2.7%, 0.3% and 0.4%, respectively, compared to those of the original network without optimization, and increases of 3.7%, 8.0% and 2.0%, respectively, compared to those of the traditional BCNN. In addition, ablation experiments are set up to verify the effectiveness of the proposed attention framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.