Abstract
Thus far, few studies have been conducted on fine-grained classification tasks for the latest convolutional neural network ConvNeXt, and no effective optimization method has been made available. To achieve more accurate fine-grained classification, this paper proposes two attention embedding methods based on ConvNeXt network and designs a new bilinear CBAM; simultaneously, a multiscale, multi-perspective and all-around attention framework is proposed, which is then applied in ConvNeXt. Experimental verification shows that the accuracy rate of the improved ConvNeXt for fine-grained image classification reaches 87.8%, 91.2%, and 93.2% on fine-grained classification datasets CUB-200-2011, Stanford Cars, and FGVC Aircraft, respectively, showing increases of 2.7%, 0.3% and 0.4%, respectively, compared to those of the original network without optimization, and increases of 3.7%, 8.0% and 2.0%, respectively, compared to those of the traditional BCNN. In addition, ablation experiments are set up to verify the effectiveness of the proposed attention framework.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.