Abstract
Infrared thermography has been widely used in the monitoring and diagnosis of power equipment to ensure the reliable functioning of power systems because of its non-contact and rapid capabilities. With the promotion of intelligent detection schemes in daily patrol inspection of power equipment by utilities, the amount of infrared images of power equipment (IIOPE) is growing geometrically. The research community has begun using deep learning technology to automatically detect objects in the IIOPE. However, the performance of existing detection methods is still not satisfactory because of the inherent attributes of power equipment infrared images, such as low contrast, complex background, and multi-scale object distribution. This research proposes an anchor-free detection model based on ConvNeXt to address these issues. An enhanced feature pyramid network (FPN) is presented to address the issue of multi-scale object distribution in the IIOPE. In addition, a dynamic soft label assignment strategy is proposed for precise object localization. Extensive experimental results on the self-built IIOPE dataset and the PASCAL VOC 2007 dataset demonstrate that the proposed method yields positive results. When compared to the current anchor-based as well as anchor-free infrared image detectors for power equipment, the proposed model offers improved accuracy while ensuring the detection speed that may satisfy the practical requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.