Abstract

In order to improve the accuracy of tool wear prediction, an attention-based composite neural network, referred to as the ConvLSTM-Att model (1DCNN-LSTM-Attention), is proposed. Firstly, local multidimensional feature vectors are extracted with the help of a one-dimensional convolutional neural network (1D-CNN), which avoids the loss of wear features caused by manual feature extraction. Then the temporal relationship learning between multidimensional feature vectors is performed by introducing a long short-term memory (LSTM) network to make up for the lack of long-short distance dependence of the captured sequence of the CNN network. Finally, an attention mechanism is applied to strengthen the ability to extract key information from tool-wearing temporal features. The proposed ConvLSTM-Att model is trained with the measured tool wear data and then performs as a tool wear predictor. The model is compared with several state-of-the-art models on the PHM tool wear data sets. It significantly outperforms the other models in terms of prediction accuracy, but with similar computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.