Abstract
Abstract In the present paper, we introduce a new concept of convexity which is generated by a family of endomorphisms of an Abelian group. In Abelian groups, equipped with a translation invariant metric, we define the boundedness, the norm, the modulus of injectivity and the spectral radius of endomorphisms. Beyond the investigation of their properties, our first main goal is an extension of the celebrated Rådström cancellation theorem. Another result generalizes the Neumann invertibility theorem. Next we define the convexity of sets with respect to a family of endomorphisms, and we describe the set-theoretical and algebraic structure of the class of such sets. Given a subset, we also consider the family of endomorphisms that make this subset convex, and we establish the basic properties of this family. Our first main result establishes conditions which imply midpoint convexity. The next main result, using our extension of the Rådström cancellation theorem, presents further structural properties of the family of endomorphisms that make a subset convex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.