Abstract

We are concerned with geometric properties of transonic shocks as free boundaries in two-dimensional self-similar coordinates for compressible fluid flows, which are not only important for the understanding of geometric structure and stability of fluid motions in continuum mechanics but also fundamental in the mathematical theory of multidimensional conservation laws. A transonic shock for the Euler equations for self-similar potential flow separates elliptic (subsonic) and hyperbolic (supersonic) phases of the self-similar solution of the corresponding nonlinear partial differential equation in a domain under consideration, in which the location of the transonic shock is apriori unknown. We first develop a general framework under which self-similar transonic shocks, as free boundaries, are proved to be uniformly convex, and then apply this framework to prove the uniform convexity of transonic shocks in the two longstanding fundamental shock problems -- the shock reflection-diffraction by wedges and the Prandtl-Meyer reflection for supersonic flows past solid ramps. To achieve this, our approach is to exploit underlying nonlocal properties of the solution and the free boundary for the potential flow equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.